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Topology of plasma equilibria and the current closure condition
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A virtually complete description of the topology of stationary incompressible Euler flows and the magnetic
field satisfying the magnetostatic equation is given by a theorem due to Arnol'd. We apply this theorem to
describe the topology of stationary states of plasmas with significant fluid flow, obeying the Hall magnetohy-
drodynamics model equations. In the context of the integrakifignchaotic topologyof the magnetic and
velocity fields, we discuss the validity of conditions analogous to that of Greene and Johnson, which, in the
case of magnetostatic equations, states that the line intédjis is the same for each closed magnetic field
line on a given magnetic surface. We also show how this property follows from the existence of a continuous
volume-preserving symmetry of the magnetic field.
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I. INTRODUCTION Further, we extend the discussion about integrability to a

We apoly certain ideas from differential geometry to the MOre general clqss of stationary states, in. which plasmaflow
PPy 9 Y lays an essential role. Such a plasma is described by the

equilibrium state of a confined plasma. First we consider . :
conventional static equilibrium, characterized by force baljﬁall magnetohydrodynamic8HD) model. The stationary

ance in the form states are na priori integrable, even if the plasm_g pressure
is not everywhere constant. We explore the conditions for the
j XB=Vnp. (1) integrability of magnetic and velocity fields and the exis-
tence of surfaces invariant under the flow that are necessary
for the confinement of plasma obeying these model equa-
tions. We also discuss the validity of the current closure and

Here B is the magnetic fieldits basic characteristic being
V-B=0), j=(1/up) V X B the plasma current, angd is the
plasma pressure. In an effective magnetic confinement sy “milar conditions for these fields

tem, the surfaces of uniform pressure form a family of neste The paper is organized as foliows In Sec. Il we recall
tori; these surfaces are called magnetic surfaces because t}iﬁwol’d’s theorem  concerning thé inteérability of

field lines lie on them. Surfaces on which the winding num'divergence-free flows. In Sec. Ill, we show how the current
ber of the field lines is rational are called rational surfaces

nd ar iallv fragile to vari lasma instabilit closure condition2) is related to the symmetry of the mag-
a Stzr?ine;greocn? t)rlle as?/sferc()ll) aoforizgnaeios?atis 2qua§§ﬁs netic field. We discuss the effects of nonintegrability as the
[1], Greene and Johns6] showed that the rational surfaces physically most relevant reason for violation of the current

ossess the following propertgee alsg3]): For each closed closure condition by stellarator magnetic fie[&s-7]. In Sec.
p ic field I'WILg propenty i .I ¢ the I IV, we discuss the integrability of stationary states of the
m{ae%r;glm ield lineL on a given rational surface the line |2\ \1iis Hodel.

dl
U= L E 2 Il. ON THE INTEGRABILITY OF VOLUME-PRESERVING
FLOWS
takes the same value and, therefore, is a surface quantity
(i.e., depends only on the magnetic surface on which the A general dynamical system oh2ne N) ordinary dif-
particular field line lieg This property is called theurrent  ferential equations is integrable if one knows-2L indepen-
closure conditionAs the argument makes essential use ofdent integrals of motion. If a given dynamical system is
(1), it seems inapplicable to more general plasma equilibriaddamiltonian, it is often sufficient to know onlg first inte-
or to a vacuum magnetic field supported by external coilgrals.

exclusively. Furthermore, as pointed out by Giiad, the Liouville proved that if a Hamiltonian system with de-
latter in general does not satisfy the current closure condigrees of freedom hasalmost everywhere independent inte-
tion. grals of motion which are in involution, then the system is

Using a theorem due to Arnol’d, we show that an argu-integrable by quadratures. In addition, he proved that if a
ment very close to that of Greene and Johnson may be calevel set of the integrals is a compact and connected mani-
ried through without(1), providing that the magnetic field fold, then it is diffeomorphic to am-dimensional torus. For
exhibits a spatial volume-preserving symmetry. In particularsome values of the integrals of motion, they cease to be
the argument could be applied to an integralslenchaotiz  independent and the level set ceases to be a manifold. Such
vacuum (harmonig field having a volume-preserving sym- critical values of the integrals correspond to separatrices di-
metry. viding the phase space into the regions foliated by tori. In
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each of these regions, action-angle variables can be intrahe fields can have more complicated topology. In that case
duced. the field is an eigenfunction of the curl operat&eltrami

For three-dimensional analytic divergence-free vectoffield).
fields, Arnol'd proved the following fundamental res{]:

Theorem 1LetV andW be two analytic vector fields in
a connected domaib C R bounded by a compact analytic
surface to whichV is parallel. If V and W are both Starting from the system of magnetostatic equatitis
divergence-free, commute with each other, i[,W]=0,  and the assumption that the domdiC R? is foliated by
and are not everywhere collinear in the given domain, i.e.nested toroidal pressure surfaces, Greene and JoH@$on
V XW #0, then the domairD is partitioned into a finite showed that the integr#®) is the same for each closed mag-
number of cells. Each of the cells is fibered either into tori ornetic field line on the same surface. This property is also
into annuli (cylinders, 11x S (1 being an interval inR).  implied by the existence of a volume preserving symmetry of
These surfaces are invariant under the flow of the vectothe magnetic field. If an analytic magnetic fidddhas a spa-
fields V and W. On an invariant torus, the field lines are tial volume-preserving symmetry group generated by an ana-
either all closed or all dense. On an annulus, all trajectoriegytic infinitesimal generatow and satisfies the assumptions
are closed. of Arnol'd’s theorem, then inside each of the cells whose

A version of this theorem, in whicilV =V X'V, has been existence is guaranteed by the same theorem, the current
applied to hydrodynamics of ideal fluid9,10]. It also ap-  closure condition is valid. If a magnetic field admits a
plies to a magnetic field obeying the magnetostatic system dfpatial volume-preserving symmetry group with an infini-

Ill. THE CURRENT CLOSURE CONDITION

equations. tesimal generatdW, then there exists a functiam such that
When considering the system of magnetostatic equations
(1), B andj are implicitly assumed to be analytic vector WXB=Va. (6)

: . ASSL g _
fields andp an analytic function in a domaid C R*bounded  pqiowing[2], we can then calculate the flux of the generator
by an analytic surface. One can also assume that the magy through an elementary surface containing a magnetic field

ne_tic field. is tangential to the boundary surface. Such a ;!tuﬁne and bounded by two infinitesimally separated toroidal
ation obviously resembles the usual tokamak setup. Wntmgor cylindrica) magnetic surfaces inside a single cell,

the commutator of two vector fields as
BX Va
[V.W]=V-VW-W- -VV, (3) oD = ﬁTdS, (7)

and using the classical vector identity

and, thus
VXVXW)=VV - W-WV V-V - VW+W - VV,
@ 3= oovd & ®
dvJ B’

we can see that the vector fielBsandj, satisfying the mag- ) ) )
netostatic equation&l), commute, i.e., Here, V is the volume enclosed by the toroidal magnetic

_ _ surface(or the volume enclosed by the cylindrical magnetic

[B,j]=-V X (BX]j)=0. (5  surface and the boundary Bf) and, as earlieB is the mag-

nitude of B. As the generatoW is divergence-free and the
{otation number of each magnetic field line on the given
magnetic surface is the same, the total fluxVif flowing

The plasma pressugeis the first integral for the vector fields
B andj whose field lines are constrained to the level sets o

Everywnere solinear 1 the given domain, the fapalogy of2C1955 €2Ch Of them must be the same. Ths shows tha the
these level sets is determined by Arnol’'d’s theorem. The dolme integral (2) is line independent on the given magnetic

mainD is partitioned into a finite number of cells, foliated by tsr:r;:ﬁe' ;Q?ﬁgznse'g?lgéggsogfs elr;/;t#;no'rs f'lmgoétﬁltigvngen
tori or annuli that are the level sets of the pressure function. 9 gene P e qurtibria.
One can explicitly show that magnetic fields exhibiting

The existence of nested pressure surfaces that constratin . : : .
ranslational, axial, and helical symmetry are integrable:

the magnetic field lines, embedded in the system of magne- Example 117 B does not depend on thecoordinate, take

tostatic equations, is necessary for the confinement of thg, —2 _ M
charged particles, which in the lowest approximation f°"°Wz\i/rﬁezhsl§£a?-?igggrsggﬁstg?[fi}xggb|2nd that all *two-

the magnetic field lines. : .

Generic three-dimensional nonintegrable equilibria satis- Example 2F9r the .vecfcor fields, Wh'Ch does not dePe”d
fying the magnetostatic equatiof) must violate some of On the angleg in cylindrical coordinatesW =r¢. Again,
the assumptions of Arol’'d’s theorem. One possibility is vio-[B,W]=0. This is the well-known result of the integrability
lation of the analyticity requirement for the vector fieBor  Of vector fields that do not depend on the azimuthal aggle
j, and thus the analyticity gb that implies the existence of ~ Example 3 The generator of helical symmetry W&/
only a finite number of critical pointéVp=0) and the exis- =wZ+r¢ (» being a constant We easily find thafB, W]
tence of the finite number of cells. The other possibility is=0 for the vector fields depending only enand the helical
that the equilibrium is force-free, i.6.=\B everywhere in anglef=z—wd¢. Notice that a® is periodic in¢ with period
the given domain. If is constant in the given domain, then 2, it is periodic in # with period 2rw. One can now iden-
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tify two different wz+ ¢=const surfaces, and the surfages tions determine the stationary states of a model of quasineu-

=0 and#=27w, to make a toroidal domain. tral plasma dynamics obtained from the equations of motion
As the above symmetries are volume preserving, thesef the ion and the electron fluids, the continuity equations of

magnetic fields obey equations similar tb) and conse- each species and Maxwell’s equations, in the limjt— 0. In

quently the conditior(2) is valid. order to obtain a closed system of equations, one can for
Experimental violation of the current closure condition is example take;=p, andV¢=0 in (9).

related to the breaking of the integrability and thus a volume- In light of the preceding discussion, we now delineate the

preserving symmetry of the magnetic field. Integrable fieldssufficient conditions for integrabilitynonchaoticity of the

are very special. A typical perturbation of an integrable sysimagnetic and/or velocity fields. We assume that all fields

tem destroys the global integrability of the magnetic field. Ininvolved in (9) are analytic on a domaib C R® bounded by

the cells foliated by tori the scenario resembles the transitiom compact analytic surface. The existence of solutions to the

to chaos in Hamiltonian flows. Though some tori break forrelated boundary value problems is a different question that

arbitrarily small perturbations, a remarkable theorem, due tove do not address here. We only address the question of the

Kolmogorov, Arnol'd, and Moser, guarantees the preservatopological properties of the stationary states which are so-

tion of smooth Diophantine tori in systems sufficiently closelutions of the two-fluid mode{9), in the case of incompress-

to an integrable one. The remaining tori still form a set ofible and compressible plasmas.

positive measures for sufficiently small perturbations. Ge- First, we observe that in the case of an incompressible

nerically, there are no rational surfaces. In place of the ratioplasma(p=consj}: (i) the right-hand sides of the first two

nal surfaces, island chains appéauost clearly at low order equations become total gradients of the functigirs—p,/p

rationalg. Though there are still some periodic orbit$ the  -v?/2-¢ and y=-p./p+ ¢, respectively{ii) all vectors in-

same winding numbgremaining after the breakup of a ra- volved in the cross product are divergence-free.

tional surface, they no longer lie on the same magnetic sur- If we assume thaty and y are not everywhere constant

face. Consequently, one should not expect that the integraind thatv andB are tangential to the boundary of the space

(2) taken along them should still have the same véibkie occupied by the plasma, we can easily see that both the mag-
Violation of the current closure conditiof2) necessarily netic and the velocity fields are integrable.
means a violation of the magnetohydrostatic equatibn In fact, even in the general case of a compressible plasma,

with nonconstant pressure function. The latter enforces théhe model(9) allows for only a nonchaotic magnetic field,
integrability of the magnetic field, forcing current closure to provided that the electron pressumgis not everywhere con-

hold. stant and thaV ¢ is zero or a function of the densigyonly.

In that case, the model implies that, X B=-V p,, with the

IV. TOPOLOGY OF STATIONARY STATES OF PLASMA divergence-free vector fieldsv, and B. Arnol'd’s theorem
WITH FLOW then gives a virtually complete description of the topology of

. , ) . the analytic magnetic and the electron velocity fields. The
The system of equatiord) doesn't take into accountion  gomainD C R? is partitioned into a finite number of cells.

flow and thus may not be appropriate to describe situationsige each of the cells, the lines of the vector fiedandv,
with a significant plasma flow. In this section, we analyze theyre constrained to two-dimensional toroidal or cylindrical

stationary states of a two-component infinitely conductinggrfaces that are the noncritical level sets of the electron
plasma, consisting of electron and ion fluids.

ressurepe.
The stationary states of such a two-component plasma afe In thg)fwo-fluid model, the closure conditidg) is satis-
described by the following system of equations: fied by the integrabl@ field, although the commuting vector
vp, 02 field is not the current density, but the product of the density
(B+V XV)Xv=——"-V (— + go), p and the electron velocity field,. The electron current den-
P 2 sity field satisfies similar closure condition. The line integral
(v—’—)xB:—V—pe+V<p, 3[; a (10)
p p Ly, Ple
9
V XB=ug, is independent of the closed electron velocity field I'Lmeeon
a given magnetic surface. In the case of homogenous plasma,
V- -B=0, the closure conditions analogous (® are satisfied by the
integrable velocity fields.
V - (pv)=0. A sufficient condition for integrability of the ion velocity

field v, and thus the current densityis thatv? is a function
Here we use the standard Alfvén notation and normalizatiomf the densityp only and that the ion pressure is not every-
of Mahajan and Yoshidfl1]: p is the dimensionless number where constantassuming thaV ¢ is zero or function of the
density; p; and p, are, respectively, the ion and electron be-densityp only, as beforg This can easily be seen if the first
tas; v is the ion fluid velocity normalized to the Alfvén of equationg9) is multiplied byp. In that case, the ion flow
speed; the electron speed is determined)wiél/uy)V X B is constrained to ion isobaric surfacégvel sets ofp),
=p(v—-Vvy); and ¢ is the electrostatic potential. These equa-which are almost all topological tori or cylinders.
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A particular case of the above situation is the one indensityp, and the electrostatic potentigl are functions of
which the plasma pressures are functions of the density onlyhe coordinater only. The ion and electron velocity field
In that case, the right-hand sides of the first two equations ifines and the magnetic field lines lie on isopycnic surfaces.
(9) can be written as total gradients of some analytic func- In particular, one can consider a “vacuum” magnetic field
tions, which we will assume are not constant. The integrabilB=(1/r)¢+B,2, with B, a constant. Such a field has
ity of the magnetic and the velocity fields, necessary fory x =0, but the electron and ion velocity field lines lie on
plasma confinement, is then guaranteed under the followingylindrical surfacegwith the periodic boundary conditions
condition: The above examples of the integrable fields, however, in-

Vp-v=0. (11) \_/olv_e high symmetrical fields that do not (_Jlepend on the cy-

lindrical coordinates$ and z. These situations are not ge-

This condition states the ion flow lies on the isopycnic sur-neric. One possibility for the violation of the condition for
faces. Since in that case the isopycnic surfaces are also ispitegrability of the involved fields are generically chaotic
baric and, from the second of equatio(®3, it follows that  double-Beltrami flow$11]. They satisfy the system of equa-
Vpe-ve=0, we also have the conditidVip-j=0. The condi-  tjons(9) with the gradients on the right-hand side of the first
tion that the current densifylies on isobaric surfaces also is two of the equations equal to zero identically.
the same as the one coming from the system of magneto- At the end of this section, let us mention that the first and
static equationg1). Additionally, the isopycnic surfaces are the last of the equation®), in the caseB=0, correspond to
the surfaces of constant electrostatic potential also, and th@e well-known equations of fluid mechanics describing the
allowed ion velocity field must satisfy*=v%(p). stationary states of Euler fluids. The discussion about the

Let us now consider an example of such an equilibriumcurrent closure condition naturally extends to this case, lead-
that satisfies the syste(®), with a simplified cylindrical ge- ing to avorticity closure conditiorfor stationary incompress-
ometry, as is usual in plasma physics considerations. Conble Euler flow described by the equatiomxv=-Vp/p
sider the magnetic fiel8:B¢(r)fp+Bz(r)2, depending only —Vv?/2, wherew=V XV is the vorticity.
on the cylindrical coordinate, in the regionD C R® bounded
by two coaxial cylindrical surfaces=R;>0 andr=R,>0. V. SUMMARY
The field is independent df, and thus satisfies the periodic , , .
boundary conditions at=0 andz=z,. Consequently, a field By invoking Arnol'd’s theorem, we have shown how the
line can be either closed or dense, with a rational or irrationafUrrént closure condition follows from a spatial continuous
winding numberw=B(r)/B,(r), B4r)#0 (Ry<r<R,), re- v_olgme-preserv_u_wg symmetry o_f the magnet|c_f|eld. By |de_n-
spectively(a toroidal cell. If one takesB,(r)=0, and consid- t!fymg the _condltlons _under which the magnetic and velocity
ers the magnetic field, which is thus additionally tan(‘:]entialr.'erl]ds arr]e m;egrable n pIasm?s V¥'th fIO\;\(s, we have (_esta_b-
to the planeg=0 andz=z, all the magnetic field lines are ished the minimum ground rules for confinement studies in

closed(a cylindrical cel). The field is divergence-free and Zyi'[aerrr?iisbeyond those described by ordinary magnetohydro-
has the property thav><B:—arBz(r)zAjﬁ(1/r)ar[rB¢(r)]2 y '
has the same form aB. A self-consistent solution of

the system(9) can be constructed using the ion and

electron velocity fields of the fornv:vd)(r)f/>+uz(r)2 and This work was supported by the Department of Energy
Ve=V—(1/uop)V X B. The plasma pressurgs and p,, the  Grant No. DE-FG02-04ER54742.
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