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A virtually complete description of the topology of stationary incompressible Euler flows and the magnetic
field satisfying the magnetostatic equation is given by a theorem due to Arnol’d. We apply this theorem to
describe the topology of stationary states of plasmas with significant fluid flow, obeying the Hall magnetohy-
drodynamics model equations. In the context of the integrabilitysnonchaotic topologyd of the magnetic and
velocity fields, we discuss the validity of conditions analogous to that of Greene and Johnson, which, in the
case of magnetostatic equations, states that the line integralrdl /B is the same for each closed magnetic field
line on a given magnetic surface. We also show how this property follows from the existence of a continuous
volume-preserving symmetry of the magnetic field.
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I. INTRODUCTION

We apply certain ideas from differential geometry to the
equilibrium state of a confined plasma. First we consider a
conventional static equilibrium, characterized by force bal-
ance in the form

j 3 B = = p. s1d

Here B is the magnetic fieldsits basic characteristic being
= ·B=0d, j =s1/m0d= 3B the plasma current, andp is the
plasma pressure. In an effective magnetic confinement sys-
tem, the surfaces of uniform pressure form a family of nested
tori; these surfaces are called magnetic surfaces because the
field lines lie on them. Surfaces on which the winding num-
ber of the field lines is rational are called rational surfaces
and are especially fragile to various plasma instabilities.

Starting from the systems1d of magnetostatic equations
f1g, Greene and Johnsonf2g showed that the rational surfaces
possess the following propertyssee alsof3gd: For each closed
magnetic field lineL on a given rational surface the line
integral

U =R
L

dl

B
s2d

takes the same value and, therefore, is a surface quantity
si.e., depends only on the magnetic surface on which the
particular field line liesd. This property is called thecurrent
closure condition. As the argument makes essential use of
s1d, it seems inapplicable to more general plasma equilibria
or to a vacuum magnetic field supported by external coils
exclusively. Furthermore, as pointed out by Gradf4g, the
latter in general does not satisfy the current closure condi-
tion.

Using a theorem due to Arnol’d, we show that an argu-
ment very close to that of Greene and Johnson may be car-
ried through withouts1d, providing that the magnetic field
exhibits a spatial volume-preserving symmetry. In particular,
the argument could be applied to an integrablesnonchaoticd
vacuumsharmonicd field having a volume-preserving sym-
metry.

Further, we extend the discussion about integrability to a
more general class of stationary states, in which plasma flow
plays an essential role. Such a plasma is described by the
Hall magnetohydrodynamicssMHDd model. The stationary
states are nota priori integrable, even if the plasma pressure
is not everywhere constant. We explore the conditions for the
integrability of magnetic and velocity fields and the exis-
tence of surfaces invariant under the flow that are necessary
for the confinement of plasma obeying these model equa-
tions. We also discuss the validity of the current closure and
similar conditions for these fields.

The paper is organized as follows. In Sec. II, we recall
Arnol’d’s theorem concerning the integrability of
divergence-free flows. In Sec. III, we show how the current
closure conditions2d is related to the symmetry of the mag-
netic field. We discuss the effects of nonintegrability as the
physically most relevant reason for violation of the current
closure condition by stellarator magnetic fieldsf5–7g. In Sec.
IV, we discuss the integrability of stationary states of the
Hall MHD model.

II. ON THE INTEGRABILITY OF VOLUME-PRESERVING
FLOWS

A general dynamical system of 2n snPNd ordinary dif-
ferential equations is integrable if one knows 2n−1 indepen-
dent integrals of motion. If a given dynamical system is
Hamiltonian, it is often sufficient to know onlyn first inte-
grals.

Liouville proved that if a Hamiltonian system withn de-
grees of freedom hasn almost everywhere independent inte-
grals of motion which are in involution, then the system is
integrable by quadratures. In addition, he proved that if a
level set of the integrals is a compact and connected mani-
fold, then it is diffeomorphic to ann-dimensional torus. For
some values of the integrals of motion, they cease to be
independent and the level set ceases to be a manifold. Such
critical values of the integrals correspond to separatrices di-
viding the phase space into the regions foliated by tori. In
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each of these regions, action-angle variables can be intro-
duced.

For three-dimensional analytic divergence-free vector
fields, Arnol’d proved the following fundamental resultf8g:

Theorem 1. Let V andW be two analytic vector fields in
a connected domainD,R3 bounded by a compact analytic
surface to whichV is parallel. If V and W are both
divergence-free, commute with each other, i.e.,fV ,Wg=0,
and are not everywhere collinear in the given domain, i.e.,
V 3W ò0, then the domainD is partitioned into a finite
number of cells. Each of the cells is fibered either into tori or
into annuli scylindersd, I13S1 sI1 being an interval inRd.
These surfaces are invariant under the flow of the vector
fields V and W. On an invariant torus, the field lines are
either all closed or all dense. On an annulus, all trajectories
are closed.

A version of this theorem, in whichW = = 3V, has been
applied to hydrodynamics of ideal fluidsf9,10g. It also ap-
plies to a magnetic field obeying the magnetostatic system of
equations.

When considering the system of magnetostatic equations
s1d, B and j are implicitly assumed to be analytic vector
fields andp an analytic function in a domainD,R3 bounded
by an analytic surface. One can also assume that the mag-
netic field is tangential to the boundary surface. Such a situ-
ation obviously resembles the usual tokamak setup. Writing
the commutator of two vector fields as

fV,Wg = V · = W − W · = V , s3d

and using the classical vector identity

= 3 sV 3 Wd = V = ·W − W = ·V − V · = W + W · = V ,

s4d

we can see that the vector fieldsB andj , satisfying the mag-
netostatic equationss1d, commute, i.e.,

fB,j g = − = 3 sB 3 j d = 0. s5d

The plasma pressurep is the first integral for the vector fields
B and j whose field lines are constrained to the level sets of
p. If the magnetic fieldB and the current densityj are not
everywhere collinear in the given domain, the topology of
these level sets is determined by Arnol’d’s theorem. The do-
mainD is partitioned into a finite number of cells, foliated by
tori or annuli that are the level sets of the pressure function.

The existence of nested pressure surfaces that constrain
the magnetic field lines, embedded in the system of magne-
tostatic equations, is necessary for the confinement of the
charged particles, which in the lowest approximation follow
the magnetic field lines.

Generic three-dimensional nonintegrable equilibria satis-
fying the magnetostatic equationss1d must violate some of
the assumptions of Arnol’d’s theorem. One possibility is vio-
lation of the analyticity requirement for the vector fieldsB or
j , and thus the analyticity ofp that implies the existence of
only a finite number of critical pointss=p=0d and the exis-
tence of the finite number of cells. The other possibility is
that the equilibrium is force-free, i.e.,j =lB everywhere in
the given domain. Ifl is constant in the given domain, then

the fields can have more complicated topology. In that case
the field is an eigenfunction of the curl operatorsBeltrami
fieldd.

III. THE CURRENT CLOSURE CONDITION

Starting from the system of magnetostatic equationss1d
and the assumption that the domainD,R3 is foliated by
nested toroidal pressure surfaces, Greene and Johnsonf2g
showed that the integrals2d is the same for each closed mag-
netic field line on the same surface. This property is also
implied by the existence of a volume preserving symmetry of
the magnetic field. If an analytic magnetic fieldB has a spa-
tial volume-preserving symmetry group generated by an ana-
lytic infinitesimal generatorW and satisfies the assumptions
of Arnol’d’s theorem, then inside each of the cells whose
existence is guaranteed by the same theorem, the current
closure condition is valid. If a magnetic fieldB admits a
spatial volume-preserving symmetry group with an infini-
tesimal generatorW, then there exists a functiona, such that

W 3 B = = a. s6d

Following f2g, we can then calculate the flux of the generator
W through an elementary surface containing a magnetic field
line and bounded by two infinitesimally separated toroidal
sor cylindricald magnetic surfaces inside a single cell,

dF =E
dS

B 3 = a

B2 dS, s7d

and, thus

dF =
da

dV
dVR

L

dl

B
. s8d

Here, V is the volume enclosed by the toroidal magnetic
surfacesor the volume enclosed by the cylindrical magnetic
surface and the boundary ofDd and, as earlier,B is the mag-
nitude of B. As the generatorW is divergence-free and the
rotation number of each magnetic field line on the given
magnetic surface is the same, the total flux ofW flowing
across each of them must be the same. This shows that the
line integral s2d is line independent on the given magnetic
surface. Though simple, this observation is important when
treating more general classes of plasma or fluid equilibria.

One can explicitly show that magnetic fields exhibiting
translational, axial, and helical symmetry are integrable:

Example 1. If B does not depend on thez coordinate, take
W = ẑ. It is easy to show thatfB ,Wg=0, and that all “two-
dimensional” vector fields are integrable.

Example 2. For the vector fieldB, which does not depend
on the anglef in cylindrical coordinates,W =rf̂. Again,
fB ,Wg=0. This is the well-known result of the integrability
of vector fields that do not depend on the azimuthal anglef.

Example 3. The generator of helical symmetry isW
=vẑ+rf̂ sv being a constantd. We easily find thatfB ,Wg
=0 for the vector fields depending only onr and the helical
angleu=z−vf. Notice that asB is periodic inf with period
2p, it is periodic inu with period 2pv. One can now iden-
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tify two different vz+f=const surfaces, and the surfacesu
=0 andu=2pv, to make a toroidal domain.

As the above symmetries are volume preserving, these
magnetic fields obey equations similar tos1d and conse-
quently the conditions2d is valid.

Experimental violation of the current closure condition is
related to the breaking of the integrability and thus a volume-
preserving symmetry of the magnetic field. Integrable fields
are very special. A typical perturbation of an integrable sys-
tem destroys the global integrability of the magnetic field. In
the cells foliated by tori the scenario resembles the transition
to chaos in Hamiltonian flows. Though some tori break for
arbitrarily small perturbations, a remarkable theorem, due to
Kolmogorov, Arnol’d, and Moser, guarantees the preserva-
tion of smooth Diophantine tori in systems sufficiently close
to an integrable one. The remaining tori still form a set of
positive measures for sufficiently small perturbations. Ge-
nerically, there are no rational surfaces. In place of the ratio-
nal surfaces, island chains appearsmost clearly at low order
rationalsd. Though there are still some periodic orbitssof the
same winding numberd remaining after the breakup of a ra-
tional surface, they no longer lie on the same magnetic sur-
face. Consequently, one should not expect that the integral
s2d taken along them should still have the same valuef6g.

Violation of the current closure conditions2d necessarily
means a violation of the magnetohydrostatic equations1d
with nonconstant pressure function. The latter enforces the
integrability of the magnetic field, forcing current closure to
hold.

IV. TOPOLOGY OF STATIONARY STATES OF PLASMA
WITH FLOW

The system of equationss1d doesn’t take into account ion
flow and thus may not be appropriate to describe situations
with a significant plasma flow. In this section, we analyze the
stationary states of a two-component infinitely conducting
plasma, consisting of electron and ion fluids.

The stationary states of such a two-component plasma are
described by the following system of equations:

sB + = 3 vd 3 v = −
=pi

r
− = Sv2

2
+ wD ,

Sv −
j

r
D 3 B = −

=pe

r
+ = w,

s9d
= 3 B = m0j ,

= ·B = 0,

= · srvd = 0.

Here we use the standard Alfvén notation and normalization
of Mahajan and Yoshidaf11g: r is the dimensionless number
density;pi and pe are, respectively, the ion and electron be-
tas; v is the ion fluid velocity normalized to the Alfvén
speed; the electron speed is determined viaj =s1/m0d= 3B
=rsv−ved; and w is the electrostatic potential. These equa-

tions determine the stationary states of a model of quasineu-
tral plasma dynamics obtained from the equations of motion
of the ion and the electron fluids, the continuity equations of
each species and Maxwell’s equations, in the limitme→0. In
order to obtain a closed system of equations, one can for
example takepi =pe and=w=0 in s9d.

In light of the preceding discussion, we now delineate the
sufficient conditions for integrabilitysnonchaoticityd of the
magnetic and/or velocity fields. We assume that all fields
involved in s9d are analytic on a domainD,R3 bounded by
a compact analytic surface. The existence of solutions to the
related boundary value problems is a different question that
we do not address here. We only address the question of the
topological properties of the stationary states which are so-
lutions of the two-fluid models9d, in the case of incompress-
ible and compressible plasmas.

First, we observe that in the case of an incompressible
plasmasr=constd: sid the right-hand sides of the first two
equations become total gradients of the functionsc=−pi /r
−v2/2−w andx=−pe/r+w, respectively;sii d all vectors in-
volved in the cross product are divergence-free.

If we assume thatc and x are not everywhere constant
and thatv andB are tangential to the boundary of the space
occupied by the plasma, we can easily see that both the mag-
netic and the velocity fields are integrable.

In fact, even in the general case of a compressible plasma,
the models9d allows for only a nonchaotic magnetic field,
provided that the electron pressurepe is not everywhere con-
stant and that=w is zero or a function of the densityr only.
In that case, the model implies thatrve3B=−=pe, with the
divergence-free vector fieldsrve and B. Arnol’d’s theorem
then gives a virtually complete description of the topology of
the analytic magnetic and the electron velocity fields. The
domainD,R3 is partitioned into a finite number of cells.
Inside each of the cells, the lines of the vector fieldsB andve
are constrained to two-dimensional toroidal or cylindrical
surfaces that are the noncritical level sets of the electron
pressurepe.

In the two-fluid model, the closure conditions2d is satis-
fied by the integrableB field, although the commuting vector
field is not the current density, but the product of the density
r and the electron velocity fieldve. The electron current den-
sity field satisfies similar closure condition. The line integral

R
Lve

dl

rve
s10d

is independent of the closed electron velocity field lineLve
on

a given magnetic surface. In the case of homogenous plasma,
the closure conditions analogous tos2d are satisfied by the
integrable velocity fields.

A sufficient condition for integrability of the ion velocity
field v, and thus the current densityj , is thatv2 is a function
of the densityr only and that the ion pressure is not every-
where constantsassuming that=w is zero or function of the
densityr only, as befored. This can easily be seen if the first
of equationss9d is multiplied byr. In that case, the ion flow
is constrained to ion isobaric surfacesslevel sets ofpid,
which are almost all topological tori or cylinders.

BRIEF REPORTS PHYSICAL REVIEW E71, 057401s2005d

057401-3



A particular case of the above situation is the one in
which the plasma pressures are functions of the density only.
In that case, the right-hand sides of the first two equations in
s9d can be written as total gradients of some analytic func-
tions, which we will assume are not constant. The integrabil-
ity of the magnetic and the velocity fields, necessary for
plasma confinement, is then guaranteed under the following
condition:

=r ·v = 0. s11d

This condition states the ion flow lies on the isopycnic sur-
faces. Since in that case the isopycnic surfaces are also iso-
baric and, from the second of equationss9d, it follows that
=pe·ve=0, we also have the condition=r ·j =0. The condi-
tion that the current densityj lies on isobaric surfaces also is
the same as the one coming from the system of magneto-
static equationss1d. Additionally, the isopycnic surfaces are
the surfaces of constant electrostatic potential also, and the
allowed ion velocity field must satisfyv2=v2srd.

Let us now consider an example of such an equilibrium
that satisfies the systems9d, with a simplified cylindrical ge-
ometry, as is usual in plasma physics considerations. Con-
sider the magnetic fieldB=Bfsrdf̂+Bzsrdẑ, depending only
on the cylindrical coordinater, in the regionD,R3 bounded
by two coaxial cylindrical surfacesr =R1.0 andr =R2.0.
The field is independent ofz, and thus satisfies the periodic
boundary conditions atz=0 andz=z0. Consequently, a field
line can be either closed or dense, with a rational or irrational
winding numberv=Bzsrd /Bfsrd, BfsrdÞ0 sR1ø r øR2d, re-
spectivelysa toroidal celld. If one takesBzsrd=0, and consid-
ers the magnetic field, which is thus additionally tangential
to the planesz=0 andz=z0, all the magnetic field lines are
closedsa cylindrical celld. The field is divergence-free and
has the property that=3B=−]rBzsrdf̂+s1/rd]rfrBfsrdgẑ
has the same form asB. A self-consistent solution of
the system s9d can be constructed using the ion and
electron velocity fields of the formv=vfsrdf̂+vzsrdẑ and
ve=v−s1/m0rd= 3B. The plasma pressurespi and pe, the

densityr, and the electrostatic potentialw are functions of
the coordinater only. The ion and electron velocity field
lines and the magnetic field lines lie on isopycnic surfaces.

In particular, one can consider a “vacuum” magnetic field
B=s1/rdf̂+B0ẑ, with B0 a constant. Such a field has
=3B=0, but the electron and ion velocity field lines lie on
cylindrical surfacesswith the periodic boundary conditionsd.

The above examples of the integrable fields, however, in-
volve high symmetrical fields that do not depend on the cy-
lindrical coordinatesf and z. These situations are not ge-
neric. One possibility for the violation of the condition for
integrability of the involved fields are generically chaotic
double-Beltrami flowsf11g. They satisfy the system of equa-
tions s9d with the gradients on the right-hand side of the first
two of the equations equal to zero identically.

At the end of this section, let us mention that the first and
the last of the equationss9d, in the caseB=0, correspond to
the well-known equations of fluid mechanics describing the
stationary states of Euler fluids. The discussion about the
current closure condition naturally extends to this case, lead-
ing to avorticity closure conditionfor stationary incompress-
ible Euler flow described by the equationw3v=−=p/r
− =v2/2, wherew= = 3v is the vorticity.

V. SUMMARY

By invoking Arnol’d’s theorem, we have shown how the
current closure condition follows from a spatial continuous
volume-preserving symmetry of the magnetic field. By iden-
tifying the conditions under which the magnetic and velocity
fields are integrable in plasmas with flows, we have estab-
lished the minimum ground rules for confinement studies in
systems beyond those described by ordinary magnetohydro-
dynamics.
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